ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
J. Takeuchi, S. Satake, T. Kunugi, T. Yokomine, N. B. Morley, M. A. Abdou
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 860-864
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1600
Articles are hosted by Taylor and Francis Online.
An investigation of MHD effects on a Flibe (Li2BeF4) simulant fluid has been conducted under the US-Japan JUPITER-II collaboration program using "FLIHY" pipe flow facility at UCLA. The present paper reports a development of unique experimental techniques using aqueous solution of potassium hydroxide as a Flibe simulant. In order to apply a particle image velocimetry (PIV) technique for magnetic field condition, special optical devices were developed. The PIV measurements of MHD turbulent pipe flow at Re = 5300 were performed, and modification of the mean flow velocity as well as turbulence suppression was observed. A flat velocity profile in the pipe center and a steep velocity gradient in the near-wall region at Ha = 20 exhibits typical characteristics of Hartmann flow.