ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
I. Cristescu, I. R. Cristescu, L. Dörr, M. Glugla, D. Murdoch
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 667-671
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1565
Articles are hosted by Taylor and Francis Online.
One of the main concerns related to licensing of ITER is the amount of potentially tritium release into the environment and the qualification of the barriers against tritium release. The final barrier of tritium release from fuel cycle is the Water Detritiation System (WDS) which will be operated in combination with the Isotope Separation System (ISS). To investigate the performances of various components of these systems, an experimental facility based on Combined Electrolysis Catalytic Exchange (CECE) process with a Cryogenic Distillation (CD) process was built at Tritium Laboratory Karlsruhe. The investigations are focused on two main issues: to quantify the separation performances of deuterium and tritium within the Liquid Phase Catalytic Exchange (LPCE) and CD processes in steady state and in dynamic mode of operation and to develop an integrated control system to be used in ITER ISS, in order to minimize the tritium inventory and to reduce at maximum extent the tritium releases. At TLK the two systems, CECE and CD have been commissioned and the experimental program and preliminary functionality tests of the main components are presented.