ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Dan Chicea, Dan Lupu
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 108-113
Technical Paper | doi.org/10.13182/FST01-A156
Articles are hosted by Taylor and Francis Online.
Several experiments were performed that loaded titanium samples with deuterium from the gas phase, changed the temperature of the samples over a wide range, and monitored the neutron emission. Neutron emissions in very low intensity bursts, still significantly above the background, were recorded, revealing that low-energy nuclear reactions in condensed matter can be produced at a very low rate, which occasionally can be high enough to become detectable.