ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. J. Murphy, P. M. Anderson, C. J. Lasnier
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 539-543
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1544
Articles are hosted by Taylor and Francis Online.
The lower divertor of the DIII-D tokamak has been modified to provide improved density control of the tokamak plasma during operation in a high triangularity double-null configuration. Union Carbide ATJ grade graphite tiles covering the new lower divertor and vessel floor were designed to have better tile-to-tile alignment and to withstand higher heat flux than existing tiles.Gaps between tiles were successfully reduced from 2.5 to 0.4 mm and tile top surface alignment was greatly improved from 1.0 to 0.1 mm. Small tile gaps along with good vertical edge alignment greatly reduce the number and size of thin edges visible to the plasma, thus minimizing possible carbon introduction into the plasma. Close tile-to-tile alignment was the result of the very flat divertor plate surface, carefully controlled tile positioning, well-machined graphite tiles, and hand filing.Tiles were specified to survive 27 MJ of energy deposited per toroidal row of tiles during a 10 s shot period. When this energy is applied over the narrow triangular heat flux profiles originally specified, modeling shows that the tiles exceed maximum allowable tensile stress. Modeling does show that the tiles are able to absorb the 27 MJ per row without exceeding stress limits in cases where the heat flux profile is less focused than the original design specification.This paper will compare tile design analysis with operational experience obtained during the first 12-week operations campaign with the new divertor.