ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
R. L. Boivin, DIII-D Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 367-374
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1515
Articles are hosted by Taylor and Francis Online.
The DIII-D National Fusion Facility has long been a center of innovation and development of diagnostics for magnetic fusion devices. The DIII-D device, a moderate size tokamak, with a high flexibility shaping coil set, neutral beam injection (NBI), electron cyclotron heating (ECH) and ion cyclotron heating (ICH), supports a very broad research program infusion science, including critical aspects related to burning plasmas expected to be encountered in ITER. This scientific program is supported by a large set of diagnostics (approximately 50), which is the product of a highly collaborative program between universities, national laboratories and industry. Although many diagnostic systems are now routinely employed to measure a wide range of plasma parameters, such as temperature, rotation, density and current profiles, there are many areas that are inherently difficult or prohibitively expensive to diagnose. Such areas include the measurements associated with energetic ion populations or with the characterization of plasma flows in the divertor/edge area. In addition, the study of burning plasmas will require the development of new and updated techniques, which need to be developed and tested in existing devices in relevant plasma conditions.