ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
MURR expansion set back by Mo. state legislature
Spirits were high last month when a ribbon cutting was held at the University of Missouri for a $20 million, three-story, 47,000-square-foot addition, dubbed MURR West, to the MURR research reactor facilities.
V. Erckmann, P. Brand, H. Braune, G. Dammertz, G. Gantenbein, W. Kasparek, H. P. Laqua, H. Maassberg, N. B. Marushchenko, G. Michel, M. Thumm, Y. Turkin, M. Weissgerber, A. Weller, W7-X ECRH Team at IPP Greifswald, W7-X ECRH Team at FZK Karlsruhe, W7-X ECRH Team at IPF Stuttgart
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 291-312
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1508
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7X (W7-X) stellarator (R = 5.5 m, a = 0.55 m, B < 3.0 T), which at present is being built at Max-Planck-Institut für Plasmaphysik, Greifswald, aims at demonstrating the inherent steady-state capability of stellarators at reactor-relevant plasma parameters. A 10-MW electron cyclotron resonance heating (ECRH) plant with continuous-wave (cw) capability is under construction to meet the scientific objectives. The physics background of the different heating and current drive scenarios is presented. The expected plasma parameters are calculated for different transport assumptions. A newly developed ray-tracing code is used to calculate selected reference scenarios and optimize the electron cyclotron launcher and in-vessel structure. Examples are discussed, and the technological solutions for optimum wave coupling are presented. The ECRH plant consists of ten radio-frequency (rf) modules with 1 MW of power each at 140 GHz. The rf beams are transmitted to the W7-X torus (typically 60 m) via two open multibeam mirror lines with a power-handling capability, which would already satisfy the ITER requirements (24 MW). Integrated full-power, cw tests of two rf modules (gyrotrons and the related transmission line sections) are reported, and the key features of the gyrotron and transmission line technology are presented. As the physics and technology of ECRH for both W7-X and ITER have many similarities, test results from the W7-X ECRH may provide valuable input for the ITER-ECRH plant.