ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NRC completes environmental review of Dresden SLR
The Nuclear Regulatory Commission has found that the environmental impacts of renewing the operating license of the Dresden nuclear power plant outside Chicago, Ill., for an additional 20 years are not great enough to prohibit doing so.
Daniela Farina
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 154-160
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1494
Articles are hosted by Taylor and Francis Online.
The theoretical framework of quasi-optical propagation power absorption and driven current of a Gaussian beam of electron cyclotron (EC) waves in a general tokamak equilibrium implemented in the code GRAY is presented. Within the framework of the complex eikonal approach, the propagation of a general astigmatic Gaussian beam is described in terms of a set of coupled rays, allowing for diffraction effects. The computation of the EC wave absorption and current drive is performed for each ray of the beam, by means of a relativistic dispersion relation for EC waves and of a neoclassical response function for the current. The code has been designed and tested for calculations of propagation, power absorption, and current drive of realistic EC beams in ITER.