ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
A. Iwamoto, R. Maekawa, T. Mito, H. Sakagami, O. Motojima, M. Nakai, K. Nagai, T. Fujimura, T. Norimatsu, H. Azechi, K. Mima
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 753-757
Technical Paper | doi.org/10.13182/FST07-A1473
Articles are hosted by Taylor and Francis Online.
The fuel layering process of a cryogenic target for the Fast Ignition Realization EXperiment (FIREX) project has been studied. A foam shell method is proposed as a fuel layering technique for this target design. The difficulty of the fuel layering comes from the aspherical target symmetry. In the case of the foam shell method, liquid fuel is directly infiltrated into a foam shell though a fuel feeder and is soaked up into the foam layer by capillarity. The fuel is then solidified and an ideal cryogenic target is formed. To date, the cryogenic system for the demonstration of the fuel layering was fabricated and subsequently modified to improve its cool-down performance. A dummy foam target has been utilized to study the fuel layering process using H2 instead of D2 and DT fuels. Liquid H2 is supplied into the shell through a feeder with a 20 m inner tip diameter. The solid H2 quantity remaining in the shell was controlled by regulating both H2 pressure and target temperature during solidification.