ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
A. I. Nikitenko, S. M. Tolokonnikov
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 705-716
Technical Paper | doi.org/10.13182/FST07-A1468
Articles are hosted by Taylor and Francis Online.
A method of ICF targets parameters reconstruction from the set of backlit shadowgraph images was developed. Proposed approach can be used for nondestructive inner (DT ice in the case of cryotarget) surface quality characterization of single- and double-layered targets and shells.Previously designed computer 3D ray-tracing model allowed us to carry out detailed investigation of the target shadowgraph image formation, to localize rays forming bright ring and to infer analytical description of this rays' group. Having been guided by this experience we designed an algorithm of inner surface shape determination using bright ring location on target's image and developed corresponding software package.This package provides a wide set of image processing tools: both general processing (pointwise operations, spatial filtering, maximums and edges localization, etc.) and specific methods (3D reconstruction, inner and outer surfaces RMS and power spectra estimation, results' visualization in different forms, etc).Proposed method and its software implementation were tested using two kinds of image sets - set of backlit photographs of real one-layered shells and set of digitally synthesized shadowgraph images.