ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Kimberly A. DeFriend, Brent Espinoza, Brian Patterson
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 693-700
Technical Paper | doi.org/10.13182/FST07-A1466
Articles are hosted by Taylor and Francis Online.
The sol-gel methods applied in the synthesis of aerogels lead to the formation of a disordered silica network. The resulting aerogel has poor structural definition that leads to poor mechanical properties. The work presented details our efforts to create a new hierarchical mesoporous silica aerogel. These meso-porous aerogels were formed utilizing a templating technique using polystyrene beads with varying diameters, 50 nm to 2 m, dispersed during sol-gel polymerization. The resulting gel was super-critically dried creating a silica aerogel templated with polystyrene beads. The polystyrene beads were then thermal oxidized creating meso-porous silica aerogel monolith. The surface area, pore volume, pore diameter, and mechanical properties of the templated aerogels were determined. Interestingly the mechanical properties of the meso-porous aerogel were significantly improved. These improvements appear to be directly related to the polystyrene bead diameter and loading.