ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
R. R. Paguio, M. Takagi, M. Thi, J. F. Hund, A. Nikroo, S. Paguio, R. Luo, A. L. Greenwood, O. Acenas, S. Chowdhury
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 682-687
Technical Paper | doi.org/10.13182/FST51-682
Articles are hosted by Taylor and Francis Online.
Previously we have developed a production process for both standard density (100 mg/cc) and high-density (180-200 mg/cc) resorcinol formaldehyde (RF) foam shells with a triple orifice droplet generator. These foam shells are needed for direct drive inertial confinement laser fusion experiments on the OMEGA laser facility at the University of Rochester. Although this process has been developed into production mode, the yield of high density RF (HDRF) and standard density (SDRF) shells with acceptable wall uniformity has been poor. This yield depends on the type of RF shell that is being fabricated. For HDRF this yield is ~5% while for the SDRF shells the yield is ~30%. We have made improvements in the yield of these shells that meet the wall uniformity specification by modifying the composition of the outer oil solution (O2) in the microencapsulation emulsion. This improvement was achieved by a small addition (0.60 wt.%) of a styrene-butadiene-styrene (SBS) block copolymer into the outer oil (O2) solution that increased the interfacial tension of the emulsion system as well as the viscosity of the O2 solution. This modification improved the out of round and concentricity of the RF foam shells resulting in an increase in the yield of shells that meet the target wall uniformity specifications.