Low-intensity nuclear emissions (neutrons and charged particles) due to exothermic deuterium desorption from Au/Pd/PdO heterostructure loaded with deuterium by electrolysis have been studied by NE213 neutron detection as well as SSB and CR-39 charged-particle detectors in low-background conditions with large statistics. Similar measurements were performed with the Au/Pd/PdO:H heterostructure as a control. It has been established that in experiments with the Au/Pd/PdO:D system, the excessive 2.45-MeV neutrons and 3.0-MeV protons are better detected than with the Au/Pd/PdO:H system, where those detection rates for n and p did not exceed the cosmic background level. The levels of neutron and proton emissions for 40- to 60-m-thick samples are found to be close to one another and after subtracting background (Au/Pd/PdO:H count rate) consist of In = (19 ± 2)10-3 n/s and Ip = (4.0 ± 1.0)10-3 p/s in a 4 solid angle, respectively. These yields of D-D reaction products in Au/Pd/PdO heterostructure comply with the mean D-D reaction rate of dd ~ 10-23s-1 per D-D pair.