ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EPRI’s new program aims to strengthen grid resilience
The Electric Power Research Institute has launched a global initiative to prepare future grids by modernizing how the electricity-generating sector detects, anticipates, and responds to emerging risks and manages technological transformation. The nonprofit energy research and development organization intends for the initiative, called Rapid Adaptation of Grid Defense, Analytics, and Resilience (RADAR), to provide a scalable framework, advanced tools, and targeted training for strengthening grid resilience and reliability.
J. W. Hughes, A. E. Hubbard, D. A. Mossessian, B. LaBombard, T. M. Biewer, R. S. Granetz, M. Greenwald, I. H. Hutchinson, J. H. Irby, Y. Lin, E. S. Marmar, M. Porkolab, J. E. Rice, J. A. Snipes, J. L. Terry, S. Wolfe, K. Zhurovich
Fusion Science and Technology | Volume 51 | Number 3 | April 2007 | Pages 317-341
Technical Paper | Alcator C-Mod Tokamak | doi.org/10.13182/FST07-A1425
Articles are hosted by Taylor and Francis Online.
H-mode research on Alcator C-Mod is described, with a focus on the edge transport barrier (ETB). ETB pedestals are characterized using several diagnostics, leading to a thorough description of profile structure in H-mode. L-H transition criteria are discussed, along with the fast evolution of the pedestal following the L-H transition. H-mode regimes are described in terms of their edge transport characteristics and the local edge parameters favoring each. Empirical scalings of the pedestal with operational parameters are found, helping to illuminate physics governing the pedestal structure, and the relationship between edge transport and global confinement is discussed. Dimensionless comparisons between discharges on different tokamaks are discussed. Finally, ongoing work and directions for the future are described.