ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Latest News
Restart progress and a new task force in Iowa
This week, Iowa Gov. Kim Reynolds signed an executive order to form the Iowa Nuclear Energy Task Force, the purpose of which will be to “advise her, the General Assembly, and relevant state agencies on the development and advancement of nuclear energy technologies and infrastructure in the state.”
K. Shiba, H. Tanigawa, T. Hirose, T. Nakata
Fusion Science and Technology | Volume 62 | Number 1 | July-August 2012 | Pages 145-149
PFC and FW Materials Technology | Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology | doi.org/10.13182/FST12-A14127
Articles are hosted by Taylor and Francis Online.
A toughness-improved type of F82H steel called F82H mod3 has been developed, and the material properties and irradiation behavior have been examined. The significant modification of the chemical composition is the reduction of Ti (<10 ppm) and N (<20 ppm) as impurities and the increase of Ta (0.1%) as an alloying element. The ductile-to-brittle transition temperature (DBTT) is improved to -90°C from -45°C for F82H IEA without change in strength. However, the creep rupture time of F82H mod3 was 1/10 of F82H IEA. Another feature of the F82H mod3 is the stability of the material properties. Higher temperature normalization (1080°C) degrades the DBTT only to -80°C due to grain coarsening without large change in strength. It is quite important for large-scale production of the material in high quality. Preliminary neutron irradiation experiments up to 17 dpa showed better irradiation resistance to changes in fracture toughness than F82H IEA.