ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
A. C. England, D. K. Lee, S. G. Lee, M. Kwon, S. W. Yoon, Hanbit Team (19P50)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 346-348
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1397
Articles are hosted by Taylor and Francis Online.
The Hanbit device is a magnetic mirror machine which has a central cell, one anchor cell and one plug cell. The Hanbit device has been involved in a series of experiments on stabilization of the MHD flute type mode including stability experiments with a divertor. We have undertaken investigations to see if the Kinetic Stabilizer (KS) of R. F. Post can stabilize the MHD instability. According to the theory, by locating a stabilizing plasma pressure on the field lines at a region with a strong second derivative and large radius in the expanding field region outside the mirrors, the main plasma in the mirror central cell in regions with unfavorable field line curvature can be stabilized. The Hanbit KS uses microwave produced plasmas on field lines in the cusp tank region. Two coils on the cusp tank are configured to produce expanding field lines with a large positive radius of curvature. A 5-kW 2.45 GHz magnetron is used to produce the stabilizing electron cyclotron resonant heated (ECRH) plasma pressure in this region. Details of the experimental arrangement and stabilizing plasma parameters were previously reported. For normally terminating plasmas, a reduction in the instability duration has been observed and the range of density where the instability occurs has decreased. However, for higher density plasmas which disrupt due to an m=-1 instability, a prevalent m=+1 instability is removed while the duration of the m=-1 instability is increased.