ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Brad J. Merrill
Fusion Science and Technology | Volume 37 | Number 3 | May 2000 | Pages 231-246
Technical Paper | doi.org/10.13182/FST00-A137
Articles are hosted by Taylor and Francis Online.
An unmitigated quench of a toroidal field (TF) magnet has been proposed as an extremely unlikely event for International Thermonuclear Experimental Reactor (ITER) Engineering Design Activity safety analysis. While the frequency of such an event is highly improbable (<1 × 10-6/yr), the public safety consequences of this event must be explored because the TF magnets are located midway between the two primary confinement barriers of the ITER design. These confinement barriers are the vacuum vessel (VV) and the cryostat. An unmitigated quench has the potential for producing melting of the magnet. If molten material from the magnet were to impinge on the walls of the VV and cryostat, these walls could fail, resulting in a pathway for release of radioactive material to the environment from the VV. A model has been developed at the Idaho National Engineering and Environmental Laboratory called MAGARC to investigate the consequences of this accident. This model is described in detail, and results from this model used in ITER safety analysis are presented.