ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
David W. Kraft, Robert G. Butler
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 475-481
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13466
Articles are hosted by Taylor and Francis Online.
We consider a dense gas of deuterium to undergo a rapid, adiabatic compression by a piston in a chamber. A reduction in the degrees of freedom of the plasma particles, such as may be effected by an electric discharge during the compression or by the application of magnetic fields, results in a higher final temperature for a given compression ratio. In model calculations we consider the adiabatic compression of one mole of molecular deuterium modeled as a van der Waals gas initially at room temperature and we compare the subsequent fusion energy release with the work done by the piston for various values of compression ratio and degrees of freedom. Prior work considered fusion to occur only at the end of the compression while the present work considers fusion energy released at various stages during the compression. Higher final temperatures and ratios of output to input energy result from this refinement of the model.