ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Oak Ridge Gaseous Diffusion Plant named a nuclear historic landmark
The American Nuclear Society recently announced the designation of three new nuclear historic landmarks: the Hot Fuel Examination Facility, the Neely Nuclear Research Center, and the Oak Ridge Gaseous Diffusion Plant K-25. Today’s article, the final offering in a three-part series, will focus on the historical significance of the Oak Ridge Gaseous Diffusion Plant K-25.
Kamron Fazel, Qi Li, Kostadin Ivanov
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 469-474
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13465
Articles are hosted by Taylor and Francis Online.
This research explores fusion cross section enhancements from electron screening within superconductors, and the feasibility of engineering a system to extract the energy from a superconductor fusion system. There have been claims that superconductors will exhibit superscreening which could significantly increase fusion cross sections. However, there is currently no widely accepted theory to explain superconductor electron screening. This research evaluated if a net energy gain could result from fusion events within superconducting PdD. With the widely accepted critical temperature of 11 K for PdD, no net energy gain would be expected from fusion reactions. However, net energy gain may be possible if a superconductor were developed with a transition temperature above 75 K. With the uncertainty of superconductor electron screening and the possibility of fusion energy extraction, an experiment was designed to close the knowledge gap. By bombarding deuterons onto PdD below the superconducting transition temperature, the superconductor screening contribution can be determined with a 38% average uncertainty of the screening energy with 95% confidence.