ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Satoshi Fukada, Shigenori Suemori
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 441-445
Other Concepts and Assessments | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13460
Articles are hosted by Taylor and Francis Online.
A system to utilize high-temperature nuclear heat effectively is proposed here. The system comprises a High-Temperature Gas-cooled nuclear Reactor (HTGR), reaction vessels to produce H2 using the steam-reforming reaction of CH4 or the Iodine-Sulfur (I-S) process, chemical heat pumps and He gas turbines. The chemical heat pumps are operated between the two decomposition temperatures of SO3 (~900°C) and HI (~500°C) of the I-S process. The pump system transfers heat from lower temperature to higher one with repeated H2 absorption-desorption cycles, and the overall thermal conversion ratio from H2O to H2 can be enhanced. The material candidate for H2 absorption in heat pump is considered TiH2 and ZrCoH3 (or UH3) according to the two reaction temperatures. The decomposition of the metal hydrides proceeds at their respective plateau pressures that are a function of temperature regardless of the H content in metals. Variations of the temperature and the equilibrium H2 pressure with repetitions of the heat-pump cycle are shown in the present paper comparatively. In addition, proton-conducting fuel cell system supplied with CH4 is incorporated in the high-temperature utilization system.