ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Report: New recommendations for nuclear waste
Today, a bipartisan group of experts including energy consultant Lake Barrett and former NRC chair Allison Macfarlane have published a report titled The Path Forward for Nuclear Waste in the U.S.
The report recommends a new solution for managing domestic nuclear waste—one that centers around the foundation of an independent corporation led by reactor owners. Responsibility for waste management transport, storage, and disposal would be managed by this corporation rather than the Department of Energy.
M. Nematollahi, M. Rezaiean
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 174-177
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13416
Articles are hosted by Taylor and Francis Online.
Using natural circulation as the primary core cooling mechanism in next generation nuclear reactors provides advantages such as improved safety, less operation and maintenance costs (because of elimination of pumps), and simplicity of system. Large scale deployment of natural circulation based reactors and safety systems depend on the successful resolution of the challenges specific to natural circulation such as driving force, system pressure drops, instability effects, and critical heat flux.In this work, natural circulation two-phase flow pressure drops in a single channel are studied experimentally. For this purpose, natural circulation hydrodynamic loop was designed. The overall pressure drop was measured by use of pressure transducer sensors and the void fraction in visible boxes which located at the end of heated tube is measured by use of high speed camera. The frictional and acceleration pressure drop are evaluated in different conditions from experimental data and corresponding theoretical formulas. The results could be useful in natural circulation based reactor design and computer codes validation.