ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
G. F. Chapline, L. F. Nakae, N. Snyderman, J. M. Verbeke, R. Wurz
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 150-154
Fission | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13412
Articles are hosted by Taylor and Francis Online.
Over the past few years a number of experiments have been carried out at LLNL with a scintillator array that has the ability to count individual MeV neutrons and -rays with nanosecond timing. It has been demonstrated that this array can be used to measure the statistical properties of the neutrons emitted in single fission chains. The multiple time scales over which these fission neutrons are correlated allow one to deduce quite a lot regarding the nature of the fissile assembly. In this paper we will describe how neutron correlations measured with a liquid scintillator array can be used to assay the amounts of fissile elements in reprocessed and spent nuclear fuels.