ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
U. Shumlak et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 119-124
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13407
Articles are hosted by Taylor and Francis Online.
The stabilizing effect of a sheared axial flow is investigated in the ZaP Flow Z-pinch experiment at the University of Washington. Long-lived, Z-pinch plasmas are generated that are 100 cm long with a 1 cm radius and exhibit gross stability for many Alfvén transit times. Experimental measurements show a sheared flow profile that is coincident with the quiescent period during which magnetic fluctuations are diminished. The flow shear is generated with flow speeds less than the Alfvén speed. While the electrodes contact the ends of the Z-pinch, the surrounding wall is far enough from the plasma that the wall does not affect stability, as is investigated experimentally and computationally. Relations are derived for scaling the plasma to high energy density and to a fusion reactor. The sheared flow stabilized Z-pinch concept provides a compact linear system.