ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Babulal Gopalapillai et al.
Fusion Science and Technology | Volume 61 | Number 1 | January 2012 | Pages 113-118
Fusion | Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems | doi.org/10.13182/FST12-A13406
Articles are hosted by Taylor and Francis Online.
ITER is a joint international fusion facility which is being built in France to demonstrate the scientific and technological feasibility of fusion power. ITER will pave the way for the commercial exploitation of nuclear fusion to meet the ever increasing energy needs of mankind. Fusion power at ITER is generated using a Tokamak machine in which burning plasma inside the vacuum vessel at temperatures in excess of 150 million °C is confined by magnetic fields. The heat energy generated from the Tokamak and the auxiliary systems is removed by the Cooling Water System (CWS). The cooling water system is designed to remove the total peak heat load of about 1100 MW to the atmosphere by circulating approximately 25,000 m3 of water of diverse chemical specifications in multiple loops.The design of the cooling water systems considers occupational health and safety, nuclear safety, radiation protection, and environmental protection requirements. Minimizing environmental impact is a major factor in demonstrating the viability of fusion energy as a future energy source. This paper presents the features in the design of CWS for making it environmentally friendly.