Complementing the efforts towards the realization of ITER, KIT is pursuing, within the overall EURATOM fusion program, a number of important long-term technology developments towards a magnetic confinement fusion power plant (FPP), taking into account the features that will distinguish such facility from ITER.

To this end, structural materials on the basis of both low-activation steels and refractory metals, as well as concepts for breeding blankets and divertor designs, are being developed along with suitable manufacturing and joining technologies. In parallel, KIT contributes to the engineering design and validation phase of the International Fusion Materials Irradiation Facility (IFMIF) necessary for qualifying the materials to be used in an FPP. The specific characteristics of an FPP fuel cycle, i.e., substantial tritium quantities within huge mass flows of gases and the related tritium compatible high throughput vacuum and pumping technologies, are being translated into viable engineering approaches. High temperature superconducting magnet solutions are being developed, with a view to overall plant efficiency. In order to increase the wall-plug efficiency of plasma heating, advanced gyrotron tubes with power levels significantly beyond what is envisaged for ITER are being developed along with a frequency tunability option for efficiently counteracting plasma instabilities.