ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
E. A. Veshchev, L. Bertalot, S. Putvinski, M. Garcia-Munoz, S. W. Lisgo, C. S. Pitcher, R. A. Pitts, V. S. Udintsev, M. Walsh
Fusion Science and Technology | Volume 61 | Number 2 | February 2012 | Pages 172-184
Technical Paper by Monaco ITER Postdoctoral Fellows | First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies | doi.org/10.13182/FST12-A13385
Articles are hosted by Taylor and Francis Online.
A feasibility study for a fast-ion-loss detector in ITER has been carried out. Taking into account the basic requirements for measuring magnetohydrodynamic (MHD)-induced fast-ion (fusion-born alpha particles and ions from external heating systems) losses and the harsh environments expected in ITER plasmas, a solution based on a reciprocating probe installed in an equatorial port is suggested. In agreement with previous studies, Monte Carlo simulations of alpha-particle load on the first wall in MHD quiescent plasmas indicate that the main losses will be concentrated below the midplane, in the region of blanket module (BM) 15 to BM 18. Orbit tracing and thermal analysis, including plasma photonic and particle fluxes together with nuclear heating, have been performed to estimate the most suitable measurement timing and position of the reciprocating probe, enabling the detection of escaping alpha particles with pitch angles from [approximately]0 to 85 deg. This large velocity space ensures the detection of escaping alpha particles on both passing and trapped orbits, allowing the study of the interaction between alpha particles and a rich variety of MHD instabilities.