ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
M. Inutake, A. Ando, K. Hattori, H. Tobari, T. Makita, H. Isobe (20R01)
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 141-146
Technical Paper | Open Magnetic Systems for Plasma Confinement | doi.org/10.13182/FST07-A1335
Articles are hosted by Taylor and Francis Online.
Dynamics of a fast-flowing plasma through a magnetic mirror field was investigated. A highly-ionized, high-density, He plasma produced by a quasi-steady MPD arcjet (MPDA) was injected into a magnetic mirror. In a uniform magnetic field region, ion acoustic Mach number (Mi) was almost unity, while in a diverging field region the Mach number increased up to 2-3. When the supersonic plasma flows into a converging field region, a shock-like structure was formed. The subsonic flow downstream of the shock was re-accelerated up to Mi of 2-3. The sonic condition (Mi=1) is satisfied at the magnetic mirror throat as in a conventional Laval nozzle. The adiabatic exponent of ions was evaluated by comparing measured spatial profiles with the prediction from 1D isentropic model.