Nuclear fusion of integer spin nuclei confined in an isotropic ion trap is investigated. Solutions of the ground state for charged bosons trapped in the isotropic harmonic oscillator potential are calculated using the equivalent linear two-body method for many-body problems, which is based on an approximate reduction of the many-body Schrödinger equation by the use of a variational principle. Using the ground-state wave function, theoretical estimates of probabilities and rates for nuclear fusion for Bose nuclei confined in ion traps are obtained. Numerical estimates for fusion rates are presented for the case of deuteron-deuteron fusion.