ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
N. Pomphrey, A. Boozer, A. Brooks, R. Hatcher, S. P. Hirshman, S. Hudson, L. P. Ku, E. A. Lazarus, H. Mynick, D. Monticello, M. Redi, A. Reiman, M. C. Zarnstorff, I. Zatz
Fusion Science and Technology | Volume 51 | Number 2 | February 2007 | Pages 181-202
Technical Paper | doi.org/10.13182/FST07-A1298
Articles are hosted by Taylor and Francis Online.
The National Compact Stellarator Experiment (NCSX) will study the physics of low-aspect ratio, high-, quasi-axisymmetric stellarators. To achieve the scientific goals of the NCSX mission, the device must be capable of supporting a wide range of variations in plasma configuration about a reference baseline equilibrium. We demonstrate the flexibility of NCSX coils to support such configuration variations and demonstrate the robustness of performance of NCSX plasmas about reference design values of the plasma current Ip, , and profile shapes. The robustness and flexibility calculations make use of free-boundary plasma equilibrium constructions using a combination of nonaxisymmetric modular coils and axisymmetric toroidal and poloidal field coils. The primary computational tool for the studies is STELLOPT, a free-boundary optimization code that varies coil currents to target configurations with specific physics properties.