ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
K. Munakata, K. Hara, T. Wajima, K. Wada, K. Katekari, M. Tanaka, T. Uda
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1440-1443
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12702
Articles are hosted by Taylor and Francis Online.
Large amounts of tritium would be handled in D-T fusion power plants. Tritium is the radioisotope of protium, and is easily taken into the human body. With regard to nuclear fusion reactor facilities, the concept of multi-confinement system is applied to prevent tritium leaking to the environment. The last barrier to confine tritium is a building itself containing all equipment and facilities. If a severe accident takes place, tritium gas could leak into the facilities. In order to prevent tritium leaking to the environment, a secure air cleanup system (ACS) needs to be installed in the building. In ACS, the tritium gas, which leaks to rooms by an accident, is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas which has a problem related to large ventilation force required to overcome high pressure drop in catalyst and adsorbent beds. Ventilation force could be substantially reduced by applying honeycomb catalysts and adsorbents to ACS. We investigated applicability of honeycomb catalysts and adsorbents to ACS, performing a screening test for the performance of honeycomb catalysts and adsorbents.