ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Gregg A. Morgan, Jr.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1367-1370
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12684
Articles are hosted by Taylor and Francis Online.
A commercially fabricated diffuser purchased from Johnson-Matthey, Inc. was evaluated for performance characterization testing at the Savannah River National Laboratory (SRNL). Different impurities are often present in the feed streams of the process diffusers, but the effect of these impurities on the diffuser performance is currently unknown. Various impurities were introduced into the feed stream of the diffuser at various levels ranging from 0.5% to 10% of the total flow in order to determine the effect that these impurities have on the permeation of hydrogen through the palladium-silver membrane. The introduction of various impurities into the feed stream of the diffuser had a minimal effect on the overall permeation of hydrogen through the Pd-Ag membrane. Of the four impurities introduced into the feed stream, carbon monoxide (CO) was the only impurity that showed any evidence of causing a reduction in the amount of hydrogen permeating through the Pd-Ag membrane. The hydrogen permeation returned to its baseline level after the CO was removed from the feed stream. There were no lasting effects of the CO exposure on the ability of the membrane to effectively separate hydrogen from the non-hydrogen species in the gas stream under the conditions tested.