ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
X. Lefebvre, K. Liger, M. Troulay, N. Ghirelli, C. Perrais
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1276-1279
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12663
Articles are hosted by Taylor and Francis Online.
The oxide mixture MnO2/Ag2O has been identified as one of the best materials to oxidize hydrogen under ambient temperature and atmospheric pressure conditions. Studies have been carried out within the scope of the mitigation of hydrogen risk in fusion reactors and the optimal composition of this mixture has been determined by Chaudron as MnO2/Ag2O 10% wt. Using Maruéjouls' experiments, a model, previously developed to explain the oxidation of hydrogen by copper oxide for helium purification purpose, has been adapted and its simulation capability tested. To achieve this point, an exploratory experiment with a thin MnO2/Ag2O bed has been carried out under low hydrogen initial concentration (130 Vppm) in order to simulate tritium degassing. Although a very good global agreement between the calculations and the experimental points, the model is unable to account for the behaviour of hydrogen breakthrough at the beginning of the experimentation. Thus, enhancements of this model are presented in this paper. Finally, Scanning Electron Microscopy (SEM) analyses confirm the coherence of some assumptions used to solve the model equations.