ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
P. Jean-Baptiste, E. Fourré, D. Baumier, A. Dapoigny
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1248-1251
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12656
Articles are hosted by Taylor and Francis Online.
Most published results concerning deuterium-hydrogen fractionation in plants are in the range 0.8-1, indicating no bioaccumulation of the heavy isotope. In spite this, an updated compilation of litterature data show that 77% of OBT/TFWT ratios measured in terrestrial plants and food items are greater than one, with a mean value of 1.92. On the other hand, OBT/TFWT ratios for aquatic samples do not show such a tritium anomaly, with 81% of the published ratios being less than 1. This strongly suggests that the cause for excess tritium in terrestrial organic matter has to be found in the atmosphere. We have developed a simple model of tritium incorporation during plant growth, forced by the annual cycle of tritium in precipitation taken from the IAEA/ISOHIS database. The simulated distribution of the OBT/TFWT ratios for terrestrial samples shows many similarities with the observed one. Although other processes such as soil moisture with lower tritium content than atmospheric water vapour can be invoked, our results suggest that the annual tritium maximum which occurs in spring, during the growing season, is capable of creating substantial OBT/TFWT enrichments and has to be considered as well.