ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. Zurro, A. Baciero, D. Rapisarda, V. Tribaldos, TJ-II Team
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 419-427
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1264
Articles are hosted by Taylor and Francis Online.
The poloidal rotation of C V ions has been deduced, in the TJ-II stellarator, from spectral line shifts measured using a high-spectral-resolution spectrometer and a nine-fiber-channel system. Analysis of the data obtained has shown that a change of sign of the poloidal rotation direction occurs that depends abruptly on plasma density but is independent of the heating method. Whereas in low-density plasmas the poloidal direction corresponds to a positive radial electric field, at higher densities negative radial electric fields are deduced from the measured poloidal rotation. These measurements are in qualitative agreement with neoclassical theory calculations that predict a change in the sign of the radial electric field mainly because of a change in the ratio of the electron-to-ion temperature.