ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
S. Fukada et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1061-1064
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12599
Articles are hosted by Taylor and Francis Online.
An experimental study on tritium transfer in porous concrete materials for the tertiary tritium safety containment is performed to investigate; (i) how fast tritium is transferred through porous concrete walls coated with or without a hydrophobic paint, and (ii) how well the hydrophobic paint coating works as a film protecting against tritium migrating through concrete. The experiment is comparatively carried out using two types of cement-paste and mortar disks with or without two kinds of paints. The results obtained here are summarized as follows: (1) Tritium transfer can be correlated in terms of the effective tritium diffusivity of DT=1.2x10-11 m2/s in porous cement. (2) Adsorbed or condensed liquid HTO itself is transferred only through pores in cement, and no tritium transfer path is present in non-porous sand. (3) Rates of tritium sorption and dissolution in cement and mortar coated with an epoxy-resin paint is correlated in terms of the diffusivity through the paint film of DT=1.0x10-16 m2/s. (4) The epoxy paint works more effectively as an anti-tritium diffusion coating than the acrylic-silicon resin paint. (5) The hydrophobic property of the silicon resin paint is deteriorated with elongating the contact time with H2O.