ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Y. Torikai et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1057-1060
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12598
Articles are hosted by Taylor and Francis Online.
A batch process concept for the decontamination from tritium of fusion reactor materials based on a hydrothermal treatment is under development at HRC. Essentially, tritium-loaded material is heated in a tightly closed vessel containing a defined amount of water. The objective of the water is to “capture” the released tritium in a small volume of liquid. For the detritiation, stainless steel temperatures in the range 393-473 K over a period of several days were found to be adequate. From the results it appears that by and large the released tritium accumulates in the purposely introduced water. The achieved degree of decontamination was estimated from the tritium concentration in the water and the tritium that remained in the decontaminated material. Tritium trapped in the surface layer of stainless steel was not reduced by the isochoric hydrothermal treatment in the same proportion as that in the bulk.