ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Kaori Kobayashi, Tomoya Enokida, Daisuke Iio, Yuta Yamada, Masanori Hara, Yuji Hatano
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 941-943
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12570
Articles are hosted by Taylor and Francis Online.
It is quite important to control and observe the concentration and total amount of tritium when nuclear fusion is utilized like ITER project. There are many kinds of molecular species, conditions, amount, and concentration in the environment and it is desirable to have multiple ways of observation. Tritium is often found as hydrogen, water and methane molecules. Their behavior differs by the molecular species and detection of molecular species is therefore important. Near-infrared spectroscopy can be a good molecular species sensitive method for this purpose. However, since basic spectroscopic information of tritiated water (HTO or T2O) is unavailable, in this study we prepared tritiated water of high concentration, and carried out frequency modulation near-infrared spectroscopy.The tritiated water was synthesized by the oxidation reaction of 1 Ci of T2. Near-infrared spectra at 1.3 micron were recorded. Many lines were observed which are not due to normal water. They are strong candidates of tritiated water spectral lines.