ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
The value of recycled U and Pu brings Standard Nuclear and Shine together
Shine Technologies has been developing fusion-adjacent technologies in Janesville, Wis., including nuclear fuel recycling, since its founding in 2005. Standard Nuclear of Oak Ridge, Tenn., was formed just last year but holds a TRISO fuel production technology backed by years of research and development since it acquired Ultra Safe Nuclear’s fuel manufacturing assets after that company’s bankruptcy in October 2024. Now, Shine and Standard Nuclear have announced plans to work together on a “strategic partnership to advance nuclear fuel recycling and U.S. fuel security.”
S. Fischer et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 925-930
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12567
Articles are hosted by Taylor and Francis Online.
The gas circulation loop LOOPINO has been set up and commissioned at Tritium Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium mixtures under conditions similar to the inner loop system of the neutrino-mass experiment KATRIN, which is currently under construction. A custom-made interface is used to connect the tritium containing measurement cell, located inside a glove box, with the Raman setup standing on the outside. A tritium sample (purity > 95 %, 20 kPa total pressure) was circulated in LOOPINO for more than three weeks with a total throughput of 770 g of tritium. Compositional changes in the sample and the formation of tritiated and deuterated methanes CT4-nXn (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen isotope exchange reactions and gas-wall interactions, due to tritium decay. A precision of 0.1 % was achieved for the monitoring of the T2 Q1-branch, which fulfils the requirements for the KATRIN experiment and demonstrates the feasibility of high-precision Raman measurements with tritium inside a glove box.