Along with pellet implosions, the interior of an inertial fusion reactor will be exposed to intense and short pulse power fluxes, leading to materials ablation. Ablated materials will either collide with each other in the axis-of-symmetry region or be re-deposited elsewhere in the target chamber. The present work is intended to investigate the behavior of colliding ablation plasma plumes and that of materials re-deposition in hydrogenic atmosphere. Laser-ablation plasma plumes of carbon are set to collide with each other in a laboratory-scale experimental setup. Results indicate that carbon cluster ions are formed, including C2+ C3+ C4+ C5+ and C6+, some of which grow into aerosol in the form of micro/nano carbon structure. Also, it has been found that ablated carbon and hydrogen can form co-deposited layers with the H/C ratio, reaching the order of 0.1.