ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Robert Martin, Farrokh Najmabadi
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 793-797
Computational Tools, Modeling & Validation | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12482
Articles are hosted by Taylor and Francis Online.
Commercial inertial fusion energy power plants will require 5-20Hz fusion target injection rates for utility-scale power production. To mitigate damage from target emission, some designs include a buffer gas in the chamber to reduce heat and particle fluxes to the chamber wall. The evolution of chamber environment between shots is an important issue as residual heat and eddies in the gas pose a serious threat on target survival during injection and target trajectory.We have simulated the evolution of a direct-drive IFE chamber with helium, deuterium, and xenon buffer gases at several densities. To evaluate the link between these simulations and the risk posed to a direct-drive target, we modify an analytical expression of the free-molecular heat flux on a surface element to account for the possibility of chamber gas condensation on the target. We show this expression compares favorably with Monte Carlo simulations in the same gas regime. These results are used to estimate risk for target survival based on several target heating failure modes. Though lower density chamber gas would improve target survival, experimental quantification of several key gas-surface interaction coefficients for cryogenic targets could open the chamber gas design window.