ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Massimo Zucchetti
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 786-790
Safety & Environment | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12481
Articles are hosted by Taylor and Francis Online.
In a Deuterium-Tritium fusion reactor, nearly 20% of the thermal power has to be transferred from the hot plasma through the wall components of the burn chamber. Design requirements of commercial fusion power plant in-vessel components are potentially even more stringent than those of experimental devices. Fusion nuclear reactor studies are currently devoted mostly to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition or a high energy gain. However, reducing the activation of materials is one of the biggest concerns for fusion power: the study of advanced fuel fusion devices, such as the CANDOR Deuterium-Helium-3 (DHe3) tokamak, is proposed for this purpose. The plasma confinement requirements for a DHe3 reactor are much more challenging than those for a DT reactor. Thus, the demands on the divertor and the first wall are more severe, particularly during a disruption. Safety analyses, starting from heat load determinations, have been performed for CANDOR, a proposed DHe3 experiment, starting from similar evaluations carried out for the ARIES III DHe3 reactor.