ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
T. D. Bohm, B. Smith, M. E. Sawan, P. P. H. Wilson
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 703-707
Nuclear Analysis & Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12467
Articles are hosted by Taylor and Francis Online.
The surface source write/read capability in the 3-D neutronics code MCNP has been implemented in the CAD based DAG-MCNP. We performed neutronics calculations for a detailed solid model of an ITER first wall/shield module to assess the accuracy of the results obtained using the surface source for toroidal fusion systems. To further understand the sensitivity of the results to the size of the surface source and boundary conditions, we performed calculations for a simplified 3-D ITER model. The results show that use of the surface source approach is accurate provided that the surface source and associated reflective boundaries are extended beyond the component of interest by at least 10 cm and the surface source is generated/placed as close as possible to the front surface of that component.