American Nuclear Society

Home / Publications / Journals / Fusion Science and Technology / Volume 60 / Number 2

Integration of the ITER in Vessel Coil System

A. Martin, E. Daly

Fusion Science and Technology / Volume 60 / Number 2 / August 2011 / Pages 653-657

Alternate Concepts & Magnets / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) /

The operation of the ITER machine requires the implementation of two sets of coil systems installed inside the vessel - the edge-localized mode (ELM) coil system and the vertical stabilization (VS) coil system. The ELM coils generate resonant magnetic perturbations in order to reduce high power deposition in the divertor induced by ELM heating and can as an option be used to control moderately unstable resistive wall modes (RWM). The VS coils provide fast vertical stabilization of the plasma. There are three ELM coils in each 40 degrees vacuum vessel (VV) sector; one each in the lower, middle and upper segments for a total of twenty seven individually powered coils. ELM coils are 6-turn rectangular coils. There are two VS coils in the VV, in the lower and upper segments below and above the lower and upper ELM coils respectively. Each upper or lower VS coil is made with 4 turns independently fed for failure recovery in the event of a faulted turn. The In-Vessel Coils (IVCs) and feeders are placed under the blanket shield modules and manifolds and need to be compatible with them. An integrated design concept has been developed that provides for an integrated design of the IVCs and their feeders, the blanket manifolds and the blankets and their respective attachment features to the VV.

Questions or comments about the site? Contact the ANS Webmaster.