ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Xiaoling Yang et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 615-619
Alternate Concepts & Magnets | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12451
Articles are hosted by Taylor and Francis Online.
A volumetrically-loaded ultra-high-density deuterium cluster material is described here for use as a deuteron beam source in laser matter interactions. Due to high volumetric loading, the material has potential to provide enough deuteron beam flux for the inertial confinement fusion (ICF) fuel ignition, avoiding depletion problem encountered by current proton-driven fast ignition (FI). In addition, accelerated deuterons can fuse with the ICF fuel (both D and T) to provide extra “bonus” energy gain, which further relaxes the laser-driver energy needed. Preliminary TRIDENT sub-Petawatt Laser experiments have provided some encouraging results showing that our cluster foils with a relative low packing fraction, can achieve a high yield of the accelerated deuterons even in the presence of an unwanted surface contaminant.