ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
J. Sanz, R. Juárez, F. Ognissanto, J. M. Perlado
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 579-584
IFE Design & Technology | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12445
Articles are hosted by Taylor and Francis Online.
One of the critical decisions in the HiPER project is to select the most appropriate material for the reaction chamber. Within this framework, we investigate the performance of different steel alloys with respect to waste management. The capabilities of commercial steels, both austenitic and ferritic/martensitic, compared to reduced-activation ferritic/martensitic steels are evaluated as for different waste management strategies (near surface burial, clearance, hands-on and remote recycling). The examined materials are: SS304, SS316, mod.9Cr-1Mo and HT9 and EUROFER. Real impurities concentrations are taken into account, and their impact is analyzed. In the study, we have assumed the most exigent HiPER 4a irradiation scenario. Commercial steels revealed to be a suitable choice for the HiPER reaction chamber, as far as their waste management options do not differ significantly from those of the reduced activation ferritic steel case. We found that for mod.9Cr-1Mo and EUROFER hands-on recycling is already possible after a cooling time shorter than 50 years and that shallow-land burial is practicable for all the steel alloys studied. The impurities present in the real heats affects the cooling time for manual recycling but not significantly. Shallow-land burial feasibility is not perturbed by the presence of impurities in the real commercial heats. Moreover, the impact of activation cross section uncertainties on the waste management assessment of the irradiated steels has been analyzed, and it is found to be of no practical significance to determine eligibility of the considered steels for the HIPER 4a reaction chamber.