ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
F. Arranz et al.
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 538-543
Blanket Design and Experiments | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST11-A12438
Articles are hosted by Taylor and Francis Online.
The IFMIF-EVEDA beam dump must be able to stop deuteron continuous and pulsed beams with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The design is based on a copper cone 2500 mm long, 300 mm aperture diameter, 5-6.5 mm thickness, whose inner surface faces the beam. The cooling is provided by water flowing at high velocity along its outer surface.Electroforming of copper on an aluminum mandrel has been considered the most suitable manufacturing technology. Nevertheless some issues must be addressed before the final decision is taken. The joint of the flange at the aperture and the possibility of manufacturing different parts subsequently joining them by electroforming is analyzed by carrying out tensile tests with specimens with and without joints.Mechanical properties and chemical composition are studied. The radiological impact of the measured impurities due to their activation under the deuteron flux is also assessed .The comparison of the properties obtained with the different manufacturing possibilities will allow choosing the most adequate one.