ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
C. P. C. Wong, V. S. Chan, A. M. Garofalo, J. A. Leuer, M. E. Sawan, J. P. Smith, R. D. Stambaugh
Fusion Science and Technology | Volume 60 | Number 2 | August 2011 | Pages 449-453
Power Plant, Demo, and FNSF | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2) | doi.org/10.13182/FST60-449
Articles are hosted by Taylor and Francis Online.
A Fusion Nuclear Science Facility (FNSF) is necessary to make possible a DEMO of the Advanced Tokamak (AT) type after ITER. One candidate, Fusion Nuclear Science Facility-AT (FNSF-AT), should have neutron wall loading of 1-2 MW/m2, continuous operation for periods of up to two weeks, a duty factor goal of 0.3 on a year and neutron fluence of 3-6 MW-yr/m2 in ten years to enable development of blankets suitable for tritium and electricity production while demonstrating nearly all the critical elements necessary for the qualification and design of a DEMO. FNSF-AT, also called FDF, will be designed using conservative implementations of all elements of AT physics to produce 150-300MW fusion power with modest energy gain (Q<7) in a modest sized normal conducting coil device. It will demonstrate and its results will help in the selection of the DEMO tritium breeding blanket concept. It will demonstrate the tritium fuel cycle, the behavior of candidate plasma facing materials, and the design and cooling of the first wall chamber and divertor components. It will also provide experience in safe operation and remote maintenance necessary for the DEMO design.