ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Kenzo Munakata, Yoshinori Kawamura
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 426-430
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12394
Articles are hosted by Taylor and Francis Online.
Cryogenic adsorption is effective for the separative recovery of hydrogen isotopes of small concentrations from the bulk helium gas. Thus, the cryogenic adsorption method is considered to be applied to the recovery of tritium from the blanket sweep gas which recovers tritium from ceramic breeder materials, the cleanup system of the helium discharge exhaust gas of the fusion reactor and so forth. The authors performed a screening test to find more suitable adsorbents for the recovery of hydrogen isotopes from the bulk helium gas at liquid nitrogen temperature. The authors tested various adsorbents, and the screening test indicates that a natural mordenite adsorbent has a quite high adsorption capacity for hydrogen under the helium atmosphere. For the adsorption of deuterium, it was found that the natural mordenite adsorbent have a high adsorption capacity even at lower pressure range of deuterium. The adsorption rate of hydrogen isotopes was quantified by analyzing breakthrough curves obtained in the experiments. Evaluated effective pore diffusivities of hydrogen isotopes in the mordenite adsorbents are comparable to that in MS5A adsorbents. Thus, it can be said that mordenite adsorbents are also suitable for adsorption of hydrogen isotopes from the viewpoint of adsorption rates. The results mentioned above suggest that the mordenite-type of adsorbents is promising for the recovery of low-concentration hydrogen isotopes from the helium bulk gas.