ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Takumi Chikada, Akihiro Suzuki, Hans Maier, Takayuki Terai, Takeo Muroga
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 389-393
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12386
Articles are hosted by Taylor and Francis Online.
Tritium permeation through erbium oxide coatings has been modeled on the basis of experimental results. Permeation models were constructed step-by-step by the introduction of the following predominant parameters: surface coverage, grain size, and energy barrier. The surface-coverage model agreed with the imperfectly coated samples fabricated by filtered arc deposition as well as by metal-organic decomposition. The grain-boundary-diffusion model also agreed with the coatings fabricated by filtered arc deposition, though it was not applicable to the metal-organic decomposition coatings because of impurities and different layer structures. The energy-barrier model explains the contributions to the additional permeation reduction of the multilayer coatings. The discussion of permeation models provides new design concepts for the development of tritium permeation barriers.