ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Shahram Sharafat, Aaron T. Aoyama, Nasr Ghoniem, Brian Williams
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 208-212
Divertor & High Heat Flux Components | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12353
Articles are hosted by Taylor and Francis Online.
A rectangular single channel low pressure drop helium-cooled refractory metal heat exchanger (HX) tube for divertor applications was designed and manufactured for testing in the SNL E-beam facility. A unique fabrication feature of the rectangular HX channel design is that all welds, brazes, and joints are located at or near the bottom of the rectangular channel, i.e., far from any heated surface. The HX tube concept uses a thin (~2mm) layer of open-cell refractory foam bonded underneath the heated surface to enhance heat transfer to the helium coolant.The helium coolant flows through a 2-mm-wide slot and then through the thin foam layer (~2 mm × 12 mm × 127 mm; H/W/L) from the inlet to the outlet plenum. This design minimizes the path of helium flow through foam to about 11 mm and thus the pressure drop through the porous media is more or less constant along the length of the channel. The concept is scalable for cooling large flat surfaces, such as a flat-plate divertor, without substantially increasing the coolant pressure losses.We present CFD analyses used to optimize the design for minimum pressure drop through the porous media and for highest uniformity of surface temperatures. A design-for-manufacturing concept for a single HX-channel was developed with the goal to minimize welds or joints near heated surfaces. Based on the advanced HX-channel design a number of HX-channels were manufactured using Mo as a surrogate material instead of tungsten.