ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
François Sagot, Didier van Houtte, Katsumi Okayama, Joel Hourtoule, Inho Song
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 134-138
ITER Systems | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12340
Articles are hosted by Taylor and Francis Online.
As the next step in the development of fusion energy, ITER has to be safe, reliable and available whenever needed to produce the experimental data as defined by the scientific program. To ensure the success of this mission, a Reliability, Availability, Maintainability and Inspectability (RAMI) analysis is being performed on the ITER plant systems to optimize the design and prepare both operation and maintenance over the ITER life. This analysis relies on a functional breakdown translated to Reliability Block Diagrams (RBDs) and on a Failure Modes, Effects and Criticality Analysis (FMECA) to provide reliability and availability calculations, to highlight the technical risks and to prioritize the ways to mitigate them in order to maximize the availability of the machine for plasma operation. Standardization is one way of addressing this concern in a cost-effective manner, as reducing the diversity of components allows keeping a reduced stock of interchangeable spares available on short notice and reducing the time to repair after a failure.This paper will present this approach as it is applied on the ITER power supplies systems: the Coil Power Supply and Distribution System (CPSDS) and the Steady-State Electrical Network (SSEN).